Geometry

Area:

Triangle:

$$
\mathrm{A}=\frac{1}{2}(\mathrm{~b} . \mathrm{h})
$$

b is the base (AC) and h is the height of the triangle

$$
\text { Parallelogram: } \quad \mathrm{A}=\mathrm{b} . \mathrm{h}
$$

b is the base and h is the height of the parallelogram

Trapezoid:

$$
\mathrm{A}=\frac{1}{2}(\mathrm{a}+\mathrm{b}) h
$$

a and b are the parallel and h is the height of the trapezoid

Circle:

$$
\mathrm{A}=\pi \mathrm{r}^{2}
$$

r is the radius.

Perimeter:

The sum of all sides (a, b, c, \ldots.) of polygon:

$$
P=a+b+C+\ldots
$$

Circumference of a circle: $\quad \mathrm{C}=2 \pi \mathrm{r}$

Scalen

Right

Volume and Surface Area

In all these cases B is the base area and H is the height of the shape.

Volume	Surface area	Shape
Rectangular Cube: $\mathrm{V}=\mathrm{B} \cdot \mathrm{H}=\mathrm{l} . \mathrm{w} \cdot \mathrm{~h}$	$2 l h+2 l w+2 h w$	
Prisms: $V=B . H$	The sum of all rectangular sides areas + 2B	
Cylinder: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{H}$	$2 \pi r H+2 \pi r^{2}$	
Pyramids: $V=\frac{1}{3} B \cdot H$	The sum of all triangular sides areas + B	
Cone: $\mathrm{V}=\frac{1}{3} \text { B. } \mathrm{H}=\frac{1}{3} \pi r^{2} \mathrm{H}$	$\begin{aligned} & \pi \mathrm{rs}+\pi r^{2}, \\ & \text { with: } \quad s=\sqrt{r^{2}+H^{2}} \end{aligned}$	
Sphere: $V=\frac{4}{3} \pi r^{3}$ r is the radius	$4 \pi r^{2}$	
Oblique Prisms: $V=B \cdot H$	The sum of all parallelogram sides areas $+2 B$	
Oblique Cylinder: $\mathrm{V}=\pi \mathrm{r}^{2} \mathrm{H}$	The sum of the parallelogram side $+2 \pi r^{2}$	

